

Nicht uni-, sondern bilaterale Vestibulopathie

Stefan Schädler

Zusammenfassung

In der vestibulären Physiotherapie melden sich wiederholt Patienten mit der Diagnose einer Neuritis vestibularis beziehungsweise einem unilateralen Vestibularisausfall, deren Anamnese von der Diagnose abweicht. Sie berichten über Stand- und Gangunsicherheit insbesondere im Dunkeln und auf unebenem Gelände, Oszillopsien (Blickinstabilität) beim Gehen und Kopfbewegungen, Beschwerdefreiheit in statischen Positionen oder wiederholten Schwindelanfällen. Die Symptome weisen eher auf eine bilaterale Vestibulopathie hin. Spezifische HNO-Untersuchungen mit dem Video-Kopfimpulstest (vKIT) aller Bogengänge bestätigten den Verdacht einer bilaterale Vestibulopathie. Solche Fälle wurden bereits beschrieben (1).

Schlüsselwörter

Neuritis vestibularis, unilaterale Vestibulopathie, bilaterale Vestibulopathie.

Summary

In vestibular physiotherapy, patients repeatedly report a diagnosis of vestibular neuritis or unilateral vestibular loss whose medical history differs from the diagnosis. They report unsteadiness of stance and gait, especially in the dark and on uneven terrain, oscillopsia (instability of gaze) when walking and moving the head, absence of symptoms in static positions or repeated attacks of vertigo. The symptoms are more indicative of bilateral vestibulopathy. Specific ENT examinations with the video head impulse test (vKIT) of all semicircular canals confirmed the suspicion of bilateral vestibulopathy. Such cases have been described previously (1).

Keywords

Neuritis vestibularis, unilateral vestibulopathy, bilateral vestibulopathy.

Unilaterale Vestibulopathie

Synonyme sind Neuritis vestibularis, Vestibularisausfall, periphere Vestibulopathie, unilaterale periphere vestibuläre Hypofunktion. Die Patienten berichten über plötzlich auftretenden heftigen Drehschwindel, meist mit Übelkeit und Erbrechen, eine Stand- und Gangunsicherheit und Falltendenz zu einer Seite. Durch Kopf- und Körperbewegungen nehmen die Symptome zu. Es gibt keine Ohrsymptome wie Gehörverlust oder Tinnitus. Im Befund zeigt sich:

 ein rotierender, horizontal schlagender Ausfallnystagmus/ Spontannystagmus zur gesunden Seite,

- eine Zunahme des Nystagmus beim Blick zur gesunden Seite,
- ein positiver Kopfimpulstest zur betroffenen Seite,
- Falltendenz zur betroffenen Seite (z.B. im Romberg-Test).

Der »Unterberger Tretversuch« beziehungsweise der »Fukuda Stepping Test« ist nicht valide (2–4) und wird von Fachgruppen nicht zur Diagnostik empfohlen (5, 6).

Als Ursachen werden eine Entzündung des Nervus (N.) vestibularis durch einen Herpes-Simplex-Virus (7, 8), eine Durchblutungsstörung oder degenerative Prozesse vermutet. Als medizinische Therapie wird in den ersten Stunden Kortison empfohlen (9, 10). Zur Reduktion des Schwindels und Verbesserung des Gleichgewichts ist die vestibuläre Rehabilitation wirksam und empfohlen (11, 12).

Rezidive einer Neuritis vestibularis sind selten (13–15). In einer Langzeitstudie (5,7–20,5 Jahre) hatten 2 von 103 Personen (1,9 %) eine zweite Neuritis vestibularis (nach 29–39 Monaten). Bei beiden Patienten betraf es die andere Seite und die Symptome waren geringer als beim ersten Ereignis (13). In einer zweiten Langzeitstudie (4–6 Jahre) erlitt 1 von 51 Patienten (2 %) eine erneute Neuritis vestibularis. Auch hierbei waren die Symptome geringer (14). In einer retrospektiven Studie hatten 14 von 131 Patienten (10,7 %) eine erneute Neuritis vestibularis. Auch dabei waren die Symptome geringer als beim ersten Ereignis (15).

Bilaterale Vestibulopathie

Die Leitsymptome einer bilateralen Vestibulopathie sind eine Stand- und Gangunsicherheit, die im Dunkeln und auf

Diagnosekriterien bilaterale Vestibulopathie (20)

- a. Chronisches vestibuläres Syndrom mit mindestens 2 der folgenden Symptome:
 - Unsicherheit beim Gehen oder Stehen,
 - bewegungsinduziertes unscharfes Sehen oder Oszillopsien beim Gehen oder schnellen Kopfbewegungen,
 - Verschlechterung des Schwankschwindels in der Dunkelheit und/oder auf unebenem Boden.
- Keine Symptome beim Sitzen oder Liegen unter statischen Bedingungen.
- c. Bilateral reduzierte/fehlende Funktion des horizontalen vestibulo-okulären Reflexes (VOR) dokumentiert durch:
 - Bilateral pathologischen Video-HIT für den horizontalen Bogengang: Verstärkungsfaktor des VOR (»VOR-gain«) < 0,6 und/oder
 - bilateral reduzierte kalorische Erregbarkeit (Summe der Geschwindigkeit des kalorisch induzierten Nystagmus bds. < 6°/s) und/oder
 - bei sinusförmiger Stimulation (0,1 Hz, Vmax = 50°/Sekunde) horizontaler angulärer »VOR-gain« < 0,15 und/oder Zeitkonstante
 Sekunden bei abruptem Stopp nach konstanter Rotation.
- d. Nicht besser durch eine andere Krankheit erklärbar.

unebenem Gelände verstärkt auftreten. Bei etwa 40 % der Patienten verursachen Kopf- und Körperbewegungen Oszillopsien, vor allem während des Gehens (16). Unter statischen Bedingungen im Sitzen und Liegen sind die Betroffenen beschwerdefrei (17). Einige Patienten berichten über rezidivierende Schwindelattacken (17).

In 2017 wurden die Diagnosekriterien der Bárány-Gesellschaft veröffentlicht (16) (Kasten). Zur Diagnostik wird die Kalorik oder der vKIT und ergänzend der »Dynamic Visual Acuity Test« (DVAT) empfohlen (16). Mit dem Bedside-Kopfimpulstest (KIT) wird nur ein Defizit mit einem »Gain« von < 0,4 erkannt (16, 18, 19).

Die Ursache einer bilateralen Vestibulopathie ist in einer Fallserie von 255 Patienten in 70 % der Fälle unklar (21). Die Autoren vermuten degenerative Prozesse. Weitere Gründe sind ototoxische (innenohrschädigende) Medikamente wie das Antibiotika Gentamicin (13 %), ein bilateraler Morbus Menière (7 %), eine Meningitis (5 %), ein CANVAS-Syndrom (20 %) sowie zahlreiche seltene Erkrankungen (17). Patienten mit bilateraler Vestibulopathie haben häufig Kleinhirn-Syndrome und »Downbeat«-Nystagmus (16, 17, 21–24) und/oder ein signifikantes Defizit des räumlichen Gedächtnisses und der Orientierung sowie eine Atrophie des Hippocampus (16, 17, 25–27).

Therapie

Gemäß Strupp (20) basiert die Therapie auf 4 Prinzipien:

- »Erklärung der Ursache der Symptome und der Therapieeffekte,

- Primärprophylaxe, das heißt insbesondere restriktiver Umgang mit ototoxischen Substanzen (vor allem Aminoglykoside, Amiodaron, bestimmte Diuretika),
- Therapie zugrunde liegender Erkrankungen, zum Beispiel Meningitis, Morbus Menière oder auto-immunologischer Erkrankungen (z. B. Cogan-Syndrom) und
- Physiotherapie mit täglichem lebensbegleitenden Gleichgewichtstraining; hierbei ist zu betonen und dem Patienten zu erklären, dass es oft 6–8 Wochen dauert, bis eine Verbesserung der Balance bemerkt wird.«

Mehr als 80 % der Patienten hatten keine signifikante Verbesserung des vestibulären Defizits unabhängig von Ätiologie, Art des Verlaufs, Geschlecht oder Alter (16, 17, 28).

Vestibuläre Physiotherapie

Eine systematische Review zu vestibulärer Rehabilitation bei bilateraler Vestibulopathie konnte 14 Studien einschließen. Die Ergebnisse zeigen gute Erfolge von Blickstabilität und Gleichgewicht durch übungsbasierte vestibuläre Rehabilitation (29). Für Aktivität und Partizipation war die Evidenz eingeschränkt. Sensorischer Ersatz befindet sich in der Erprobung.

Die Therapie ist problemorientiert und befundbasiert. Ein bilaterales vestibuläres Defizit kann sich auf alle Projektionen des vestibulären Systems auswirken (30). Die vestibuläre Physiotherapie und neue Ansätze wurden detailliert beschrieben (31).

- Bei einer Stand- und Gangunsicherheit wird ein problemorientiertes befundbasiertes Eigentraining durchgeführt.
- Bei kompensatorischem Armeinsatz wird dieser im Zirkeltraining und in Aktivitäten konsequent abgebaut.
- Bei mehreren Patienten mit bilateraler Vestibulopathie konnte die Stand- und Gangsicherheit trotz vestibulärer Rehabilitation und Gleichgewichtstraining nicht deutlich oder vollständig verbessert werden. Bei Aktivierung der tiefen Haltungsmuskeln (M. transversus abdominis TA) verbessert sich das Gleichgewicht im Stehen, im Gehen und bei Alltagsaktivitäten deutlich.
- Bei Blickinstabilität und Oszillopsien wird ein Training zur Blickstabilisation (u.a. VOR-Training) durchgeführt. Allerdings brachte bei mehreren Fällen mit bilateraler Vestibulopathie ein konsequentes Training zur Blickstabilisation keine deutliche Verbesserung. Bei mehreren Fällen konnte mit einem aufbauenden okulomotorischen und optokinetischen Eigentraining eine deutliche Verbesserung bis zur weitgehenden Symptomfreiheit erreicht werden. Bei abwesendem VOR und bilateralem vestibulärem Verlust scheint bei bestimmten Patienten der Optokinetische Reflex (OKR) wenigstens einen Teil zu kompensieren (32).
- Die vestibuläre Stimulation/Habituation sollte alle Anteile des Vestibularorgans umfassen: Horizontaler Bogengang, linker anteriorer und rechter posteriorer Bogengang (LARP)

und rechter anteriorer und linker posteriorer Bogengang (RALP), Utriculus und Sacculus. Um die Zervikalregion nicht übermäßig zu belasten, sind Ganzkörperbewegungen vorzuziehen. Insbesondere die Bogengänge sollten mit zunehmenden Geschwindigkeiten stimuliert werden.

- Bei fast allen Fällen mit bilateraler Vestibulopathie verbessert kognitive Ablenkung die Oszillopsien und/oder die Gangsicherheit.
- Bei einer bilateralen Vestibulopathie kann zusätzlich ein benigner paroxysmaler Lagerungsschwindel (BPLS) auftreten.
- Eine bilaterale Vestibulopathie kann häufig ein Trigger für einen »Persistent Postural-Perceptual Dizziness« (PPPD) sein (33). Dieser wird mit einem multimodalen Therapieprogramm behandelt (34).

Nachfolgend werden 2 weitere Fälle mit der Diagnose einer unilateralen Vestibulopathie vorgestellt, die sich als bilaterale Vestibulopathie herausstellten.

Fallbeispiel 1

Eine 54-jährige Frau erlitt vor knapp 2 Jahren eine periphe vestibuläre Funktionsstörung links. Ein problemorientiertes befundbasiertes Training für vestibuläre Rehabilitation führte zu einer weitgehenden Beschwerdefreiheit. Aktuell meldet sie sich wieder mit einer erneuten Neuritis vestibularis links.

Anamnese

Im »Dizziness Handicap Inventory« (DHI) gibt sie 40 von 100 Punkten an. Sie berichtet über ein neu aufgetretenes instabiles verwackeltes Bild in alle Richtungen vor allem beim Gehen. Weiter berichtet sie über Schwindel beim Lesen am Bildschirm, bei schnellen Kopfbewegungen, beim Gehen über schiefes Terrain (in alle Richtungen) und beim Autofahren auf unebener Straße. Das Fahrradfahren ist nicht möglich. Das Gehen im Dunkeln ist schwierig.

»Clinical Reasoning«

Ein Rezidiv einer Neuritis vestibularis ist selten (13–15). Wiederholte Schwindelanfälle können bei bilateraler Vestibulopathie auftreten. Zudem deuten Oszillopsien auf eine bilaterale Vestibulopathie hin.

Mit dem Verdacht einer bilateralen Vestibulopathie wird der Patientin eine Abklärung bei einer HNO-Ärztin mit vKIT aller Bogengänge empfohlen. Die Untersuchung bestätigte den Verdacht und ergibt folgende Diagnose:

- Neuropathia vestibularis acuta des Nervus vestibularis ramus superior links mit komplettem Ausfall.
- Presbyvestibulopathie, bilaterale Neuropathia vestibularis des Nervus vestibularis inferior beidseits mit Unterfunktion.

- Pancochleäre Normakusis beidseits.
- Zustand nach Neuropathia vestibularis acuta links mit kompletter Regeneration (vor 2 Jahren).

Befund

Im »Clinical Test for Sensory Interaction in Balance« (CT-SIB) zeigt sich ein Hinweis auf visuelle Abhängigkeit und auf vestibulär (1 | 1–2 | 1 | 1 | 2–3 | 2). Aufgrund der Oszillopsien wird die dynamische Blickstabilität mit dem »Dynamic Visual Acuity Test« (DVAT) untersucht und ist mit 5 Zeilen Differenz sehr auffällig. Im Test der Mustererkennung kann beim Gehen mit 360°-Drehungen kein Schwindel ausgelöst werden, mit 3x3 Sekunden Trampolin wird wenig Schwindel ausgelöst, der mit jeder Serie leicht zunimmt. Der Tandemstand ist auffällig. Im Test der Okulomotorik sind die Vergenz, die Sakkaden, die langsame Blickfolge, der »Smooth Pursuit Neck Torsion Test« (SPNT) und der Test mit der Optokinetischen Nystagmus (OKN)-Trommel unauffällig. Die Toleranzschwelle für optokinetische Stimulation mit Stimulopt ist auffällig (-20°/s, | 13°/s). Es werden diskrete Befunde der Somatosensorik und zervikal gefunden.

Behandlung und Verlauf

In der ersten Sitzung wird mit einem Training des VOR, der langsamen Blickfolge und der Sakkaden sowie einem Blickstabilisationstraining beim Gehen mit Lesen als Eigentraining begonnen. Bereits in der 2. Sitzung ist der DVAT bei 1 Zeile Differenz wieder normal. Es wird mit einem optokinetischen Eigentraining begonnen. Die Toleranzschwelle für optokinetische Stimulation verbessert sich von Woche zu Woche. Eine Behandlung der subokzipitalen Muskulatur verbessert im Retest die Werte mit Stimulopt. Das Anspannen der tiefen Bauchmuskeln verbessert den Tandemstand. Ubungen zum Abbau der visuellen Abhängigkeit werden instruiert und im Verlauf gesteigert. Das Gleichgewichtstraining wird mit dem Einbeinstand in Varianten gesteigert und mit einem Krafttraining der Plantarflexoren und der Hüft-Abduktoren unterstützt. Mit Erreichen der Normalwerte mit Stimulopt treten im Alltag nur noch gelegentlich verwackelten Bilder auf. Zusätzlich wird die visuelle Bewegungsempfindlichkeit trainiert. Die vestibuläre Stimulation wird auf einem höheren Level trainiert mit LARP und RALP, schnelle Drehungen mit Ball werfen oder rollen, mit Drehstuhl sowie Miniconi-Übungen. Das Gleichgewicht wird weiter gesteigert mit Drehungen auf dem Trampolin, Gehen auf einem Balken und Sypoba. Befundbasiert werden zervikale Dysfunktionen und ein »Thoracic-Outlet-Syndrom« (TOS) behandelt. Es wird ein Trainingsplan für ein kontinuierliches Eigentraining entwickelt. Die Therapiefrequenz wird kontinuierlich erweitert bis auf einmal monatlich.

Ergebnis

Die Therapie wird nach 30 Sitzungen mit einem DHI von 16 Punkten abgeschlossen.

Fallbeispiel 2

Eine 70-jährige Frau meldet sich zur spezialisierten Physiotherapie mit der Diagnose eines deutlichen peripher vestibulären Defizits links bei Zustand nach Neuronitis vestibularis vor Jahren und einem benignen paroxysmalen Lagerungsschwindel des lateralen Bogengangs rechts.

Anamnese

Im DHI gibt sie 44 von 100 Punkten an. Im DHI-Kurzassessment BPLS (35) hat sie 0 von 8 Punkten und im DHI-Kurzassessment zervikogen (36) 6 von 12 Punkten. Ihr Hauptproblem sind Ausfallschritte beim Gehen mit einer Zunahme der Unsicherheit bei engen Stellen (z.B. Bürgersteig). Sie berichtet über Ausfallschritte vor allem bei Drehungen nach rechts und sie muss sich oft halten. Im Dunkeln fühlt sie sich sehr unsicher. Im Supermarkt kann sie nicht geradeaus gehen. Auf der Leiter ist sie unsicher. Beim Bücken ist sie unsicher mit einer Falltendenz nach vorne.

Untersuchung

Im »Dynamic Gait Index« (DGI) hat sie 17 von 24 Punkten und hat Schwierigkeiten bei Kopfrotation und beim Übersteigen von Hindernissen. Im CTSIB hat sie einen deutlichen Hinweis auf ein vestibuläres Defizit und einen leichten Verdacht auf somatosensorische Probleme (1 | 1 | 1 | 1 -2 | 4 | 4).

Aufgrund der Diagnose eines BPLS wird der »Side Lying-Test« für den posterioren Bogengang durchgeführt, der beidseits ohne Befund ist. Der »Body Roll-Test« (BRT) für den horizontalen Bogengang ist nach rechts ohne Befund, nach links positiv ohne objektiven Nystagmus. Der DVAT weist eine Differenz von 2 Zeilen auf. Beim Test der Mustererkennung (1x Rotation des Oberkörpers im Stehen) tritt Schwindel mit einer Latenz auf, dauert aber bei wiederholten Bewegungen gleich lang. Das Gehen mit Kopfrotation löst eine Deviation aus, das Gehen mit 360°-Drehungen löst weniger Deviation mit Ausfallschritten aus, vor allem bei Drehung nach rechts. Der Tandemstand ist auffällig mit kompensatorischem Armeinsatz.

In der Untersuchung der Okulomotorik ist die Vergenz ohne Befund, die Sakkaden nach unten sind verlangsamt, die langsame Blickfolge horizontal ist sakkadiert und vertikal normal. Der SPNT ist negativ und die Optokinetik (mit OKN-Trommel getestet) ist unauffällig. Die Toleranzschwelle für optokinetische Stimulation mit Stimulopt ist nur leicht auffällig (–27°/s, | 21°/s).

Bei der Testung der Somatosensorik ist der Stehtest mit schmaler Spur unsicher und der Romberg-Test ist positiv. Der Vibrationssinn an Metatarsale 1 ist beidseits normal mit 6/8. Die aktive Fußstrategie ist vor allem nach hinten auffällig.

Weiter wird ein leichtes Kraftdefizit der Hüftabduktoren beidseits und der Plantarflexoren beidseits sowie eine Einschränkung der Dorsalextension an beiden Sprunggelenken gefunden.

Behandlung und Verlauf

Das »Gufoni-Manöver« wird für den linken horizontalen Bogengang durchgeführt. Anschließend ist im Retest mit dem BRT nach links ein horizontaler ageotroper Nystagmus zu sehen. Danach wird das »Zuma-Manöver« für rechts gemacht.

In den folgenden Sitzungen wird vestibuläre Stimulation aller Anteile des Vestibularorgans durchgeführt. Die Stimulation von Utriculus hat keinen Einfluss auf die seitlichen Ausfallschritte beim Gehen. Ein Training für Blickstabilität, Okulomotorik und Optokinetik wird als Eigentraining durchgeführt, bis die Normalwerte mit Stimulopt erreicht sind. Sie führt ein aufbauendes Gleichgewichtstraining ohne kompensatorischen Armeinsatz zuhause durch. Es werden Gangvariationen mit Kopfbewegungen, Drehungen, Kreuzschritten etc. trainiert. Die Hüftabduktoren und die Plantarflexoren werden als Eigentraining gekräftigt und die Dorsalextension im Sprunggelenk mobilisiert. Die Somatosensorik der Füße/Beine wird stimuliert.

Aufgrund ihrer Unsicherheit nachts werden Übungen mit geschlossenen Augen trainiert. Weitere befundbasierte Maßnahmen werden durchgeführt. Die Behandlung der Musculus (M.) sternocleidomastoidei verbessert die Kopfschmerzen deutlich.

Trotz intensiver Therapie und konsequentem Eigentraining verbessert sich die Gangsicherheit mit Ausfallschritten kaum. Nun wird sie aufgefordert, im Stehen und Gehen den M. transversus abdominis anzuspannen. Die Gangsicherheit verbessert sich sofort deutlich.

»Clinical Reasoning«

Die Befunde im HNO-Bericht sind unklar und deuten eher auf eine bilaterale Vestibulopathie hin. Eine Gangunsicherheit vor allem im Dunkeln ist typisch für eine bilaterale Vestibulopathie. Die Aktivierung des M. transversus abdominis verbessert die Gangsicherheit objektiv und subjektiv deutlich und ist bei Patienten mit bilateraler Vestibulopathie häufig zu beobachten.

Aufgrund des Verdachts einer bilateralen Vestibulopathie wird ihr eine Abklärung bei einer HNO-Ärztin mit vKIT aller Bogengänge empfohlen. Die Untersuchung ergibt folgende Diagnose:

- Chronische bilaterale Vestibulopathie.
- Ganz diskreter benigner paroxysmaler Lagerungsschwindel rechts posterior.

- Mittelgradige Schallleitungsschwerhörigkeit im Tieftonbereich links.
- Normakusis rechts.

Verlauf und Behandlung

Ihr wird erklärt, dass sie mit einer bilateralen Vestibulopathie von einem lebenslänglichen Eigentraining profitiert. Der M. transversus abdominis wird trainiert und die Aktivierung in den Alltag integriert. Das Gleichgewichtstraining wird weiter gesteigert mit Übungen im Einbeinstand. Vestibuläre Stimulation wird auf einem hohen Level mit schnellen Bewegungen und Miniconi-Übungen trainiert. Ein Trainingsplan für ein kontinuierliches Eigentraining wird entwickelt und die Therapiefrequenz wird kontinuierlich erweitert bis auf einmal monatlich.

Ergebnis

Die Gangsicherheit ist deutlich besser mit einem DGI von 22,5 von 24 Punkten. Im Dunkeln ist sie noch unsicher und der Einbeinstand noch schwierig.

Schlussfolgerungen

Diagnostik

- Rezidive einer Neuritis vestibularis sind selten.
- Die Anamnese liefert meistens die nötigen Informationen für den Hinweis auf eine bilaterale Vestibulopathie (Kasten).
- Zur Diagnostik ist ein vKIT aller Bogengänge zu empfehlen.
- Die Diagnose ist deshalb für die Patienten wichtig, dass sie den Grund ihrer Symptome kennen und wissen, dass ein »lebenslanges« Training notwendig ist.

Therapie

- Bei bilateraler Vestibulopathie ist ein »lebenslanges« Training empfohlen.
- Wenn Übungen zur Blickstabilisation die Oszillopsien nicht verbessern, sollte ein optokinetisches Eigentraining im symptomfreien Bereich durchgeführt werden mit dem Ziel, nach und nach das Tempo zu steigern. Eine Behandlung der subokzipitalen Muskulatur verbessert häufig die Oszillopsien.
- Ein Training und die Aktivierung der tiefen Haltungsmuskeln (M. transversus abdominis) im Alltag verbessert oft die Stand- und Gangsicherheit.
- Die vestibuläre Stimulation sollte alle Anteile des Vestibularorgans (horizontaler Bogengang, LARP und RALP, Utriculus und Sacculus) berücksichtigen. Um keine Nackenprobleme zu verursachen, sollte mit Ganzkörperbewegungen
 stimuliert werden. Für die Bogengänge soll das Tempo kontinuierlich gesteigert werden möglichst bis zu einem hohen Tempo.

- Eine kognitive Ablenkung verbessert oft Gangsicherheit und Oszillopsien.

Literatur

- 1. Schädler S (2024): Nicht uni-, sondern bilaterale Vestibulopathie. pt Zeitschrift für Physiotherapeuten 76 (8), 50–54
- Kuipers-Upmeijer J, Oosterhuis HJ (1994): Unterberger's test not useful in testing of vesitibular function. Ned Tijdschr Geneeskd 138 (3), 136–139
- Hickey SA, Ford GR, Buckley JG, Fitzgerald O'Connor AF (1990): Unterberger stepping test: a useful indicator of peripheral vestibular dysfunction? J Laryngol Otol 104 (8), 599–602
- 4. Honaker JA, Boismier TE, Shepard NP, Shepard NT (2009): Fukuda stepping test: sensitivity and specificity. J Am Acad Audiol 20 (5), 311–314; quiz 335
- Shirley Ryan AbilityLab (2013): Fukuda Stepping Test (Unterberger Step Test). https://www.sralab.org/rehabilitation-measures/fukudastepping-test-unterberger-step-test
- Schädler S, Kool J, Lüthi H, Marks D, Oesch P, Pfeffer A, Wirz M (2019): Assessments in der Rehabilitation – Band 1: Neurologie. 4. überarbeitete und erweiterte Auflage, Hogrefe, Göttingen
- 7. Arbusow V, Strupp M, Wasicky R, Horn AK, Schulz P, Brandt T (2000): Detection of herpes simplex virus type 1 in human vestibular nuclei. Neurology 55 (6), 880–882
- 8. Arbusow V, Theil D, Strupp M, Mascolo A, Brandt T (2001): HSV-1 not only in human vestibular ganglia but also in the vestibular labyrinth. Audiol Neurootol 6 (5), 259–262
- 9. Strupp M, Brandt T (2009): Vestibular neuritis. Semin Neurol. 29 (5), 509–519
- AWMF online (2021): DGHNO-KHC, DGN S2k-Leitlinie Vestibuläre Funktionsstörungen. Register-Nr 017/078. https://register.awmf.org/ de/leitlinien/detail/017-078
- McDonnell MN, Hillier SL (2015): Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Cochrane Database Syst Rev 1 (1), CD005397.
- 12. Hall CD, Herdman SJ, Whitney SL, Anson ER, Carender WJ, Hoppes CW, Cass SP, Christy JB, Cohen HS, Fife TD, Furman JM, Shepard NT, Clendaniel RA, Dishman JD, Goebel JA, Meldrum D, Ryan C, Wallace RL, Woodward NJ (2022): Vestibular Rehabilitation for Peripheral Vestibular Hypofunction: An Updated Clinical Practice Guideline From the Academy of Neurologic Physical Therapy of the American Physical Therapy Association. J Neurol Phys Ther 46 (2), 118–177
- Huppert D, Strupp M, Theil D, Glaser M, Brandt T (2006): Low recurrence rate of vestibular neuritis: a long-term follow-up. Neurology 67 (10), 1870–1871
- 14. Mandala M, Santoro GP, Awrey J, Nuti D (2010): Vestibular neuritis: recurrence and incidence of secondary benign paroxysmal positional vertigo. Acta Otolaryngol 130 (5), 565–567
- 15. Kim YH, Kim KS, Kim KJ, Choi H, Choi JS, Hwang IK (2011): Recurrence of vertigo in patients with vestibular neuritis. Acta Otolaryngol 131 (11), 1172–1177
- 16. Strupp M, Kim JS, Murofushi T, Straumann D, Jen JC, Rosengren SM, Della Santina CC, Kingma H (2017): Bilateral vestibulopathy: Diagnostic criteria Consensus document of the Classification Committee of the Bárány Society. J Vestib Res 27 (4), 177–189
- 17. Strupp M, Feil K, Dieterich M, Brand RA (2017): Chapter 17 Bilateral Vestibulopathy. Handb Clin Neurol 137, 237–240
- Jorns-Haderli M, Straumann D, Palla A (2007): Accuracy of the bedside head impulse test in detecting vestibular hypofunction. J Neurol Neurosurg Psychiatry 78 (10), 1113–1138
- 19. Yip CW, Glaser M, Frenzel C, Bayer O, Strupp M (2016): Comparison of the Bedside Head-Impulse Test with the Video Head-Impulse Test in a Clinical Practice Setting: A Prospective Study of 500 Outpatients. Front Neurol 7, 58
- 20. Strupp M, Zwergal A, Goldschagg N (2023): Die sechs häufigsten peripheren vestibulären Syndrome. Nervenheilkunde 42 (01/02), 8–20
- Zingler VC, Cnyrim C, Jahn K, Weintz E, Fernbacher J, Frenzel C, Brandt T, Strupp M (2007): Causative factors and epidemiology of bilateral vestibulopathy in 255 patients. Ann Neurol 61 (6), 524–532
- 22. Migliaccio AA, Halmagyi GM, McGarvie LA, Cremer PD (2004): Cerebellar ataxia with bilateral vestibulopathy: description of a syndrome and its characteristic clinical sign. Brain 127 (Pt 2), 280–293

- Wagner JN, Glaser M, Brandt T, Strupp M (2008): Downbeat nystagmus: aetiology and comorbidity in 117 patients. J Neurol Neurosurg Psychiatry 79 (6), 672–677
- 24. Kirchner H, Kremmyda O, Hüfner K, Stephan T, Zingler V, Brandt T, Jahn K, Strupp M (2011): Clinical, electrophysiological, and MRI findings in patients with cerebellar ataxia and a bilaterally pathological head-impulse test. Ann N Y Acad Sci 1233, 127–138
- 25. Kremmyda O, Hüfner K, Flanagin VL, Hamilton DA, Linn J, Strupp M, Jahn K, Brandt T (2016): Beyond Dizziness: Virtual Navigation, Spatial Anxiety and Hippocampal Volume in Bilateral Vestibulopathy. Front Hum Neurosci 10, 139
- 26. Göttlich M, Jandl NM, Sprenger A, Wojak JF, Münte TF, Krämer UM, Helmchen C (2016): Hippocampal gray matter volume in bilateral vestibular failure. Hum Brain Mapp 37 (5), 1998–2006
- 27. Brandt T, Schautzer F, Hamilton DA, Brüning R, Markowitsch HJ, Kalla R, Darlington C, Smith P, Strupp M (2005): Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 128 (Pt 11), 2732–2741
- 28. Zingler VC, Weintz E, Jahn K, Mike A, Huppert D, Rettinger N, Brandt T, Strupp M (2008): Follow-up of vestibular function in bilateral vestibulopathy. J Neurol Neurosurg Psychiatry 79 (3), 284–288
- 29. Porciuncula F, Johnson CC, Glickman LB (2012): The effect of vestibular rehabilitation on adults with bilateral vestibular hypofunction: a systematic review. J Vestib Res 22 (5–6), 283–298
- 30. Bronstein AM, Patel M, Arshad Q (2015): A brief review of the clinical anatomy of the vestibular-ocular connections-how much do we know? Eye (Lond) 29 (2), 163–170
- 31. Schädler S (2024): Bilaterale Vestibulopathie. pt Zeitschrift für Physiotherapeuten 76 (9), 36–41
- 32. Chambers BR, Mai M, Barber HO (1985): Bilateral vestibular loss, oscillopsia, and the cervico-ocular reflex. Otolaryngol Head Neck Surg 93 (3), 403–407
- 33. Staab JP, Eckhardt-Henn A, Horii A, Jacob R, Strupp M, Brandt T, Bronstein A (2017): Diagnostic criteria for persistent postural-perceptual dizziness (PPPD): Consensus document of the committee for the Classification of Vestibular Disorders of the Bárány Society. J Vestib Res 27 (4), 191–208
- 34. Schädler S (2021): Neue Ansätze in der Behandlung bei Persistent Postural-Perceptual Dizziness. pt Zeitschrift für Physiotherapeuten 73 (5), 30–35
- 35. Whitney SL, Marchetti GF, Morris LO (2005): Usefulness of the dizziness handicap inventory in the screening for benign paroxysmal positional vertigo. Otol Neurotol 26 (5), 1027–1033
- 36. Reid SA, Callister R, Katekar MG, Treleaven JM (2017): Utility of a brief assessment tool developed from the Dizziness Handicap Inventory to screen for Cervicogenic dizziness: A case control study. Musculoskelet Sci Pract 30, 42–48

Anschrift des Verfassers:

Stefan Schädler Physiotherapie Schloss 88 3454 Sumiswald Schweiz E-Mail mail@stefan-schaedler.ch